High-affinity vanadate transport system in the cyanobacterium Anabaena variabilis ATCC 29413.

نویسندگان

  • Brenda S Pratte
  • Teresa Thiel
چکیده

High-affinity vanadate transport systems have not heretofore been identified in any organism. Anabaena variabilis, which can fix nitrogen by using an alternative V-dependent nitrogenase, transported vanadate well. The concentration of vanadate giving half-maximum V-nitrogenase activity when added to V-starved cells was about 3 x 10(-9) M. The genes for an ABC-type vanadate transport system, vupABC, were found in A. variabilis about 5 kb from the major cluster of genes encoding the V-nitrogenase, and like those genes, the vupABC genes were repressed by molybdate; however, unlike the V-nitrogenase genes the vanadate transport genes were expressed in vegetative cells. A vupB mutant failed to grow by using V-nitrogenase unless high levels of vanadate were provided, suggesting that there was also a low-affinity vanadate transport system that functioned in the vupB mutant. The vupABC genes belong to a family of putative metal transport genes that include only one other characterized transport system, the tungstate transport genes of Eubacterium acidaminophilum. Similar genes are not present in the complete genomes of other bacterial strains that have a V-nitrogenase, including Azotobacter vinelandii, Rhodopseudomonas palustris, and Methanosarcina barkeri.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molybdate transport and its effect on nitrogen utilization in the cyanobacterium Anabaena variabilis ATCC 29413.

Molybdenum is an essential component of the cofactors of many metalloenzymes including nitrate reductase and Mo-nitrogenase. The cyanobacterium Anabaena variabilis ATCC 29413 uses nitrate and atmospheric N2 as sources of nitrogen for growth. Two of the three nitrogenases in this strain are Mo-dependent enzymes, as is nitrate reductase; thus, transport of molybdate is important for growth of thi...

متن کامل

Molecular Analysis of the psaC Gene Encoding the F(A)/F(B) Apoprotein of Photosystem I in the Filamentous Cyanobacterium Anabaena variabilis ATCC 29413.

In cyanobacteria, green algae, and higher plants, the psaC gene encodes PsaC, the apoprotein for two iron-sulfur clusters, FA and FB, located in the PSI complex in the thylakoid membrane. FA and FB act as the terminal electron acceptors in the PSI complex (reviewed in ref. 2). Our research objective is to develop a genetic system in which various hypotheses concerning the structural and functio...

متن کامل

The coxBAC operon encodes a cytochrome c oxidase required for heterotrophic growth in the cyanobacterium Anabaena variabilis strain ATCC 29413.

Three genes, coxB, coxA, and coxC, found in a clone from a gene library of the cyanobacterium Anabaena variabilis strain ATCC 29413, were identified by hybridization with an oligonucleotide specific for aa(3)-type cytochrome c oxidases. Deletion of these genes from the genome of A. variabilis strain ATCC 29413 FD yielded strain CSW1, which displayed no chemoheterotrophic growth and an impaired ...

متن کامل

Directed mutagenesis of an iron-sulfur protein of the photosystem I complex in the filamentous cyanobacterium Anabaena variabilis ATCC 29413.

In oxygenic photosynthetic organisms the PSI-C polypeptide, encoded by the psaC gene, provides the ligands for two [4Fe-4S] centers, FA and FB, the terminal electron acceptors in the photosystem I (PSI) complex. An insertion mutation introduced in the psaC locus of the filamentous cyanobacterium Anabaena variabilis ATCC 29413 resulted in the creation of a mutant strain, T398-1, that lacks the P...

متن کامل

Complete genome sequence of Anabaena variabilis ATCC 29413

Anabaena variabilis ATCC 29413 is a filamentous, heterocyst-forming cyanobacterium that has served as a model organism, with an extensive literature extending over 40 years. The strain has three distinct nitrogenases that function under different environmental conditions and is capable of photoautotrophic growth in the light and true heterotrophic growth in the dark using fructose as both carbo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 188 2  شماره 

صفحات  -

تاریخ انتشار 2006